On Some Generalizations of the Hilbert -Hardy Type Integral Inequalities

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

More on Some Hardy Type Integral Inequalities

In 2012, W. T. Sulaiman presented new kinds of Hardy’s integral inequalities. In this paper, we derive some new extensions of the famous Hardy’s integral inequality. The results present direct generalization of the original Hardy inequality. In addition, the corresponding reverse relation is also obtained.

متن کامل

On Hardy-hilbert Integral Inequalities with Some Parameters

In this paper, we give a new Hardy-Hilbert’s integral inequality with some parameters and a best constant factor. It includes an overwhelming majority of results of many papers.

متن کامل

On Multiple Hardy-hilbert Integral Inequalities with Some Parameters

where the constant factor [π/ sin(π/p)]p is also the best possible. Hardy-Hilbert inequalities are important in analysis and in their applications (see [7]). In recent years, many results (see [1, 3, 8–10]) have been obtained in the research of Hardy-Hilbert inequality. At present, because of the requirement of higher-dimensional harmonic analysis and higher-dimensional operator theory, multipl...

متن کامل

Some Multi–dimensional Hardy Type Integral Inequalities

In this paper we prove some new results concerning multi-dimensional Hardy type integral inequalities and also some corresponding limit Pólya–Knopp type inequalities.

متن کامل

Some Refinements of Hilbert-pachpatte Type Integral Inequalities

In this paper, we obtain an extension of a multivariable integral inequality of Hilbert-Pachpatte type. By specializing the upper estimate functions in the hypothesis and the parameters, we obtain many special cases.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indian Journal of Science and Technology

سال: 2013

ISSN: 0974-6846,0974-5645

DOI: 10.17485/ijst/2013/v6i2.6